
AJAX 1

Running head: AJAX

AJAX: Highly Interactive Web Applications

Jason Giglio

jgiglio@netmar.com

AJAX 2

Abstract

AJAX stands for Asynchronous JavaScript and XML. AJAX has recently been gaining attention as

a way to make web applications more interactive. While it can reduce apparent latency between

user interaction and application response, it can cause user interface, maintainability, and

accessibility issues.

AJAX 3

AJAX: Highly Interactive Web Applications

AJAX is a hot topic lately in web development. AJAX stands for Asynchronous JavaScript

and XML. Some popular new web applications such as Google’s Gmail and Google Maps are

written in an AJAX style. AJAX is not a new technology; JavaScript and XML have been used for

many years. It is instead a programming technique using these older technologies to create highly

interactive web applications that operate similar to the way local applications operate (Garrett,

2005).

Even though AJAX has great potential to solve some of the problems that arise when

developing for a web platform, it does have some drawbacks. Web applications designed using

AJAX must pay special attention to usability, as AJAX techniques break some usability guidelines

“by default.” Workarounds must be put into place to restore usability (Bosworth, 2005).

AJAX also presents new challenges to the development process. Testing is complicated by

offloading a good portion of the web application to the client side. Since the web developer has

little control over which client is used, strict adherence to web standards and testing with many

clients is necessary. Developers must also face learning and testing JavaScript, XML, CSS,

XHTML, and the browser DOM, in addition to whatever server side language they choose to use

(Hinchcliffe, 2005).

Traditional Techniques

Traditional web applications use GET and POST request methods to submit data to the

server. The server then formulates a reply and sends the user an entirely new page with the results

on it. Because of the nature of this transaction, the system is not stateful without external tracking.

To track state, cookies are used. Cookies are small text files stored on the client side that are used

to maintain state data from page load to page load (Snook, 2005).

This technique has some drawbacks. Users must wait after each interaction for the server to

process their request and for the new page to render. Slow response time is a common user

AJAX 4

complaint when asked about the usability of a web site (Nielsen, 1999).

Slow response time can be addressed in part by ensuring that the server side application uses

resources in an efficient way. Database or mainframe access, disk access, or heavy CPU

calculations can cause delays in page response. These problems can often be addressed by the

programmer. The other main cause of slow page loads is the delay caused by the user’s connection

to the Internet. This cannot be controlled by the web designer directly; however the designer can

reduce the bandwidth required to accommodate users on slow connections (Nielsen, 1999).

Advantages of AJAX

In an AJAX system, the same underlying methods are used, but the actual requests are

disconnected from direct user interaction. Instead the JavaScript, which is loaded on the client

side, presents one persistent view to the user. As the user interacts with the application, it makes

requests as needed to the web server to fetch new data using the browser’s Document Object

Model to modify the existing page the user is already viewing (Garrett, 2005).

Because of this, the user does not experience as many delays when making requests. Data

that is likely to be accessed can be prefetched by the JavaScript on the client side. Requests are

fetched asynchronously; the application no longer has to wait for the user to click on a hyperlink or

a submit button to update the display, thus feedback can be immediate, much like a desktop

application (Singel, 2005).

The user is freed from the technical limitations of the request-reply-request loop that

happens in traditional web applications. One example is Google Suggest, which provides a sort of

“autocomplete” for search terms as you type them. Through AJAX, the browser does not need to

have the entire list fetched ahead of time, it can make asynchronous requests as the user types to

fill in the needed entries (Garrett, 2005).

AJAX 5

Usability disadvantages of AJAX

Applications developed using AJAX can easily break several accepted web usability

guidelines. Bosworth (2005) considers these to be the top ten usability guidelines that AJAX

applications often violate:

Not giving immediate visual cues for clicking widgets

AJAX makes requests asynchronously, so when the user performs an action in an AJAX

application that must be synchronous, the browser will not give them feedback that anything is

happening. In a normal web application, the browser will show a spinner or a progress bar on the

status bar when a request is pending. Thus the AJAX developer must provide this feedback

themselves as part of the AJAX application (Bosworth, 2005).

Breaking the back button

Users expect standard navigation tools such as “forward” and “back” to work properly.

Nielsen (1999) counts breaking the “back” button as one of the most common usability errors that

web designers commit. AJAX applications often break the “back” button because the application

appears on a single page that is updated with new information.

Changing state with GET requests

W3C Technical Architecture Group (2004) has published guidelines on the appropriate use

of the GET and POST methods in a web application. In general, they recommend that GET be

used for simple requests that do not alter the state of a resource on the server side and that POST

be used for complex operations or operations that change the state of a resource. For example, a

simple search query should be GET, but submitting a form to create an account on a web site

should be POST.

AJAX applications must avoid using GET requests that alter the state of resources on the

server side. It is often convenient to use such requests to facilitate the development of an AJAX

AJAX 6

application, but such practices should be avoided as they can cause resources to be inadvertently

modified if the user visits or revisits a URL that contains such a GET statement.

Blinking and changing parts of the page unexpectedly

The asynchronous nature of AJAX can cause unexpected updates to page elements that are

not part of what the user is currently concentrating on. Nielsen (1999) has coined the phrase

“animation avoidance” to describe how users generally ignore areas of a web page that blink or

animate unexpectedly. This could confuse the user or cause them to miss important information.

Not using links that be communicated or bookmarked

Because AJAX applications often display on a single page, the user will not be able to easily

communicate or bookmark any particular snapshot of data unless the developer takes special

measures to restore this functionality. This also presents problems for search engines and other

automated web “bots,” who may not be able to index the data on the site (Bosworth, 2005).

Too much client side code slowing down the browser

JavaScript is not a high performance language. Even as CPUs become faster, site

performance is still a concern with AJAX applications that include more JavaScript code than ever

before (Bosworth, 2005).

Inventing new user interface (UI) conventions

Nielsen (1999) counted the non-standard use of UI widgets as the number three most

common usability problem on the web, even before AJAX was even conceived. Users expect a

consistent UI that works in similar ways no matter which application they are using. UI elements

communicate information about the types of input that are required of the user. For example, radio

buttons communicate that the user must make a mutually exclusive choice.

AJAX 7

Not cascading local changes to other parts of the page

AJAX applications are often confined to a section of the screen. If the user makes a change

within the AJAX application that should update all page elements, then the developer must

remember to update all elements, even those outside the AJAX application (Bosworth, 2005).

Asynchronously performing batch operations

Much like the radio buttons above, users derive much information from UI elements. If an

AJAX application used radio buttons perform an action that altered a resource asynchronously,

then the user may become disoriented. Users are accustomed to the ability to change their mind

before submitting. The asynchronous nature of AJAX can encourage bad practice in this regard

(Bosworth, 2005).

Scrolling the page and disorienting the user

Because AJAX is asynchronous, operations that would cause a text reflow can happen at any

time. If the user is reading a section of text and the AJAX application inserts more content above

the text, then the entire page may scroll down, which may push the text the user was reading off the

screen completely (Bosworth, 2005).

Technical disadvantages of AJAX

Obasanjo (2005) raises several points regarding the technical challenges facing an AJAX

application. One problem is the slightly differing implementations of JavaScript between various

browsers. While standards compliant code largely solves this problem, sometimes browser

capability detection is necessary. Detecting the browser capabilities on each page is inefficient, and

a method must be developed where detection can be done once per user.

Along those same lines, some browsers will not have JavaScript enabled at all, so the AJAX

application will not function. Some allowance must be made for users that do not have JavaScript

AJAX 8

enabled. This could mean twice the development work if a good abstraction cannot be found that

allows for both AJAX and non-AJAX front ends.

Some clients may create excessive connections to the server due to the asynchronous nature

of AJAX. Since the developer does not have direct control over the client, it may be hard to control

the server load. Hinchcliffe (2005) also points out that AJAX creates a need for fast handling of

many small back end XML messages, an area where traditional web service backends are lacking.

Combine this with the concerns of Bosworth (2005) regarding client speed, and AJAX can

potentially be a very slow platform.

Conclusions

If AJAX was proposed 2 years ago in a magazine article or journal, then I do not believe

anyone would have taken it seriously. The real-world, working applications that Google has

developed prove that it is possible and can work well for at least some web applications. Lacking

their leadership in this area, it is doubtful this paper would have ever been written.

Questions remain as to how widely applicable AJAX techniques will be. It is not clear how

many problem domains lend themselves well to AJAX implementations. Google has proven that it

can be used to manage very large graphical datasets with Google Maps and can make a decent mail

client with Gmail. Microsoft, always an imitator of the successful, is working on a new version of

Hotmail based on AJAX and a sort of web portal based on AJAX called start.com (Obasanjo,

2005).

It also remains to be seen how well developers will overcome the severe usability problems

that AJAX techniques can create. Usability is an often neglected area of web design, and

techniques that encourage bad usability such as AJAX walk a dangerous line (Bosworth, 2005).

AJAX may seem to have a long list of disadvantages, caveats, and seemingly

insurmountable problems, with a short list of advantages. What makes it so compelling is that the

primary advantage is one that has been sought for many years: The potential to turn the web into a

AJAX 9

full-fledged application platform, suitable for nearly any application.

AJAX 10

References

Bosworth, A. (2005, 18 May). Ajax Mistakes. Retrieved December 26, 2005 from

http://sourcelabs.com/ajb/archives/2005/05/ajax_mistakes.html.

Garrett, J. J. (2005, 18 February). Ajax: a new approach to web applications. Retrieved December

25, 2005 from http://www.adaptivepath.com/publications/essays/archives/000385.

Hinchcliffe, D. (2005, 18 August). State of Ajax: Progress, Challenges, and Implications for SOAs.

Retrieved December 26, 2005 from

http://hinchcliffe.org/archive/2005/08/18/1675.aspx.

Nielsen, J. (1999, 30 May). Top-10 New Mistakes of Web Design. Retrieved December 25, 2005

from http://www.useit.com/alertbox/990530.html.

Obasanjo, D. (2005, 16 August). Moving Beyond the Basics: Scott Isaacs on AJAX Design

Patterns. Retrieved December 26, 2005 from http://www.25hoursaday.com/weblog/

PermaLink.aspx?guid=23a58e59-0a8d-43e%4-ab18-a6d64ca5be87.

Singel, R. (2005, 5 August). You Say You Want a Web Revolution. Retrived on December 26, 2005

from http://www.wired.com/news/technology/0,1282,68403,00.html.

Snook, J. (2005, 28 June). Powering the web with HTTP. Retrieved December 25, 2005 from

http://digital-web.com/articles/powering_the_web_with_http/.

W3C Technical Architecture Group. (2004, 21 March). URIs, Addressability, and the use of HTTP

GET and POST. Retrieved December 26, 2005 from

http://www.w3.org/2001/tag/doc/whenToUseGet.html.

